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To execute learned actions reliably, the cortex must integrate 
sensory information, establish a motor plan and gener-
ate appropriate commands to muscles. Animals, including 

humans, readily perform such behaviors with remarkable consis-
tency, even years after acquiring the skill. How does the brain achieve 
this stability? Is the process of integration and planning as stable as 
the behavior itself? In the present study, we explore these fundamen-
tal questions from the perspective of populations of cortical neurons.

Recent theoretical and experimental work posits that neural func-
tion is built on the activation of specific population-wide activity 
patterns—neural modes—rather than on the independent modula-
tion of individual neurons1–3. These neural modes are the dominant 
co-variation patterns within the neural population1. The set of neu-
ral modes defines a neural manifold1,3,4, a surface that captures much 
of the variance in the recorded neural activity (Fig. 1). We refer to 
the time-dependent activation of the neural modes as their latent 
dynamics1,5,6. In this framework, the activity of each recorded neu-
ron expresses a weighted combination of the latent dynamics from 
all the modes1,7,8 (Fig. 1b). We hypothesized that the latent dynamics 
underlying consistent behavior must be similarly stable. These latent 
dynamics exist in a relatively low-dimensional manifold embed-
ded in a high-dimensional neural space with axes corresponding 
to each of the neurons modulated during the behavior (Fig. 1c). 
In experimental scenarios, the activity of the full neural popula-
tion within the cortex can be only partially sampled. However, the 
neural modes can be empirically estimated from recorded activity 
by applying dimensionality reduction techniques9 such as principal 
component analysis1,8 (PCA) to construct an empirical low-dimen-
sional manifold embedded in the empirical neural space spanned 
by the recorded neurons8 (Fig. 1d,e). The latent dynamics within 
this empirical manifold are an estimate of the true latent dynamics 
within the full neural space. Quantifying the stability of the latent 

dynamics is challenging because current recording techniques can-
not sample a stable set of neurons over long periods10,11.

In the present study, we developed a method to examine the 
stability of the underlying latent dynamics, despite unavoidable 
changes in the set of neurons recorded using chronically implanted 
microelectrode arrays (Fig. 1a). Using this method, we assessed the 
stability of the latent dynamics during consistent behavior, using the 
sensorimotor system as a model of cortical processing. We recorded 
the activity of neural populations, approximately 100 neurons at a 
time, in each of 3 different cortical areas—dorsal premotor cortex 
(PMd), primary motor cortex (M1) and primary somatosensory 
cortex (S1)—while monkeys performed a center–out reaching 
behavior. PMd is critical for movement planning, exhibiting strong 
pre-movement preparatory activity12 that can be used to predict 
the intended movement well before it occurs13. M1 is the primary 
cortical area from which descending output to the spinal cord 
arises14, and its activity is tightly coupled to the dynamics of motor 
execution15,16, even during motor adaptation17. Lastly, area 2 of S1 
integrates somatosensory feedback18,19, which is essential for the 
correction of ongoing movements20.

Throughout recordings spanning up to 2 years, latent dynamics 
were remarkably stable in all three cortical regions despite turnover 
of the recorded neurons. Once identified, the stable latent dynam-
ics enabled accurate predictions of various behavioral features using 
the same ‘decoder’ throughout these long timespans. We found 
that aligning latent dynamics within the empirical neural manifold  
(Fig. 1f) was crucial to stabilize the neural activity, and that success 
could not be attributed to simpler phenomena, such as movement 
information in the activity of individual neurons. Therefore, we 
identified a neural correlate of stable behavior: the low-dimensional 
latent dynamics embedded in the full-dimensional cortical neural 
space. We posit that analogous stable latent dynamics may underlie 
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a variety of learned brain functions, from stimulus recognition to 
complex cognitive processes.

Results
Hypothesis and approach. We studied the stability of the latent 
dynamics within the neural manifold and their relationship with 

consistent behavior (Fig. 1a) over many days. Our theoretical frame-
work posits that the empirical latent dynamics observed on different 
days (Fig. 1d,e) will differ because they result from projecting the 
true manifold (Fig. 1c) on to different empirical neural manifolds 
(henceforth simply ‘manifolds’) embedded in different empirical 
neural spaces. It is the stability of the true latent dynamics that we 
wish to establish. To identify the neural modes that span the mani-
fold, we represented the activity of each recorded neuron along one 
axis in an embedding neural space1,3,4,8. In the toy example in Fig. 1d, 
the number of recorded neurons, and thus the dimensionality d of 
the neural space, is 3. The neural modes can be computed using any 
dimensionality reduction method that identifies patterns of neural 
co-variation9 (here we used PCA; see Methods). Mathematically, the 
principal component (PC) axes are the neural modes that span the 
manifold1 (blue plane in Fig. 1d).

Changes in the specific neurons recorded over days necessarily 
cause a change in the axes that define the embedding neural space, 
along with a corresponding change in the empirically estimated 
manifold and latent dynamics (Fig. 1d,e). We need to compensate 
for these changes to evaluate the stability of the true latent dynam-
ics governing cortical function (Fig. 1c–e). Note that the projection 
from the full neural space to the empirical neural space of recorded 
neurons is a linear transformation, and that PCA identifies a linear 
manifold within the empirical neural space. We conjectured that, 
if the true latent dynamics during repeated task execution were 
indeed stable, a simple linear transformation should be sufficient 
to compensate for these changes (Fig. 1f). If, on the contrary, the 
true latent dynamics were to change fundamentally across days, for 
example, due to a change in the intrinsically nonlinear dynamics of 
the network21, no linear transformation would be able to compen-
sate for these changes. We developed a method based on canoni-
cal correlation analysis (CCA)5,21 (see Methods) to compensate for 
changes in recorded neurons and to compare the empirical latent 
dynamics across days. We describe this process as ‘aligning’ the 
latent dynamics. In the following sections, we test the hypothesis 
that stable latent dynamics underlie consistent behavior by analyz-
ing neural population activity recorded in sensorimotor cortex over 
times spanning weeks to years.

Behavior. We trained six monkeys (monkeys C, M, T, J, H, P)  
to perform a center–out reaching task while using a planar manip-
ulandum (see Methods; Fig. 2a). The monkey started each trial 
by holding at the central target. Then, one of eight outer targets  
was presented. After a variable delay period, an auditory ‘go cue’ 
instructed the monkey to move the manipulandum to the intended 
target to receive a liquid reward (Fig. 2a). Across monkeys, the 
time between all recordings spanned from ~20 to ~750 days 
(see Supplementary Table 1). The behavioral performance of all  
monkeys was consistent across these timespans, as exemplified 
by the hand trajectories in Fig. 2b. To quantify stability, we com-
puted the correlation between the X and Y hand velocities across 
single trials for a given target, for all pairs of days (Fig. 2c). In all the 
cases, these correlations were large (mean > 0.77, Fig. 2d; and see 
Extended Data Fig. 1).

Changes in neural recordings across days. We studied the neural 
basis for consistent behavior using microelectrode arrays chroni-
cally implanted in the arm area of three different regions of the 
cortex in six different monkeys (note that monkey C received 
sequential implants in the right and left hemispheres; see Methods). 
Figure 3a shows the approximate locations of the implanted arrays: 
monkeys CL and M had dual implants in PMd and M1; monkeys J  
and CR had a single implant in M1; monkey T had an implant in 
PMd; and monkeys H and P had an implant in area 2 of S1. As 
illustrated by the M1 dataset from monkey CL (Fig. 3b,c), neu-
ral activity on each electrode changed dramatically over 15 days  
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Fig. 1 | Hypothesis. a, Subjects perform the same behavior over days,  
yet in typical experimental set-ups the same neurons cannot be recorded 
over this period. b, In our model, single-neuron activity results from a 
weighted combination of the latent dynamics of the neural modes. c, The  
latent dynamics (black line; arrow indicates passage of time) underlying  
a behavior are mostly confined to a ‘true’ manifold (gray surface) within  
the full D-dimensional neural space that involves all neurons modulated  
by the task. Dim., dimension. d, The activity of the recorded neurons  
(N1, N2 and N3 in this example) is represented in an empirical neural space 
in which each axis corresponds to the activity of one recorded neuron. 
During behavior, the recorded population activity describes a trajectory 
(blue trace). During movement, such trajectories are typically confined 
to a low-dimensional neural manifold (blue plane). The projections of the 
population activity on to the two axes that define the neural manifold in 
this example are the empirical latent dynamics. e, Latent dynamics during 
the same behavior but on a different day, with a different set of recorded 
neurons. We hypothesize that the true latent dynamics for a given behavior 
will be stable during repeated execution across days, even when the 
empirical manifold to which the latent dynamics are confined is embedded 
in a different empirical neural space. f, We predict that, in the face of neural 
turnover, the stable latent dynamics can be recovered by linear alignment.
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(see also Extended Data Figs. 2 and 3). We assessed the implications 
of neural turnover by fitting tuning curves relating neural activity to 
the reach direction (see Methods). We found that mean firing rate, 
modulation depth and preferred direction changed progressively 
over time, as shown in Extended Data Fig. 4 for all monkeys and 
all recorded cortical regions. For this and all subsequent analyses, 
we used the multiunit activity recorded on each electrode, which 
allowed for an accurate reconstruction of the latent dynamics7; our 
results were similar when using spike-sorted single neurons. Much 
of this change can be explained by turnover in the specific neurons 
recorded on each electrode (see Extended Data Figs. 2 and 3). The 
challenge in testing our hypothesis resides in compensating for 
these changes in recorded neurons.

Primary motor cortex during movement control. We now con-
sider whether stable latent dynamics within the cortex underlie 
the generation of consistent behavior, starting with the analysis of 
M1 activity during movement execution. We applied our method 
to align the latent dynamics across days, even as the number and 
identity of recorded neurons changed. Using single-trial neural 
data, we computed the manifold and the latent dynamics within 
it using PCA separately for each day (see Methods). The dimen-
sionality of the manifold for each brain region (M1: 10; PMd: 15; 
S1: 8) was selected based on previous studies5,22. Using CCA5,21, we 
found the linear transformations M that made the latent dynam-
ics from subsequent days maximally correlated to those of day 1 
(see Methods), to compensate for changes in the empirical embed-
ding space due to turnover in the recorded neurons. As described 
above, if the true latent dynamics during consistent behavior were 
indeed stable, the trajectories of the latent dynamics would be very 
similar after alignment (Fig. 1f): the leading canonical correlations 
(CCs) would approach a value of 1. On the contrary, if true latent 
dynamics within the brain were unstable for repeated behavior, the 
trajectories would differ even after attempted alignment, and the 
resulting CCs would remain low.

Although the trajectories described by the latent dynamics for 
M1 datasets separated by 16 days were different (Fig. 3c,d), they 
became quite similar after alignment with CCA (Fig. 3f,g). This 
observation held for all pairwise combinations of days: the aligned 
latent dynamics remained stable for the full length of time we 
recorded from this monkey (red trace in Fig. 4a).

To interpret the magnitude of this across-day stability, we com-
pared it with an upper bound on the achievable CCs, provided by 
the stability across random blocks of trials within each day (see 
Methods). For this monkey, the across-day CCs were almost identi-
cal to the within-day CCs (red and gray traces in Fig. 4a). To sum-
marize these results, we computed a normalized similarity: the ratio 
of the across-day CCs to the corresponding within-day CCs. For 
this dataset, the normalized similarity of the latent dynamics after 
alignment with CCA was 0.93 ± 0.03 (mean ± s.d.; Fig. 4e). The nor-
malized similarity without alignment was much lower (0.38 ± 0.14; 
Fig. 4e). We obtained similar results for all M1 datasets, compris-
ing four implants from three different monkeys for up to 2 years  
(Fig. 4b–e). These results held for a range of manifold dimension-
alities from 6 to 12 (see Extended Data Fig. 5a–c), and also when 
using sorted neurons to identify the manifold (see Extended Data 
Fig. 5d,e). Thus, M1 latent dynamics during repeated movement 
generation are stable for very long periods of time.

Neuroscientists often attempt to understand the information 
encoded within neural populations by predicting relevant behav-
ioral features from neural activity. This is of particular interest 
within the field of brain–computer interfaces (BCIs), which seek 
to ‘decode’ cortical activity to obtain control signals for computer 
cursors, robots or prostheses that reanimate paralyzed limbs23–25. 
The limited stability of these decoders over time has been an ongo-
ing source of concern11,26. Consequently, we asked how accurately a 
linear decoder trained to predict hand kinematics based on latent 
dynamics from one day would perform on aligned latent dynamics 
from a different day (Fig. 5a; and see Methods). Figure 5b shows 
hand velocity reliably predicted 16 days later. This decoder almost 
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achieved the performance of a within-day decoder, trained and 
tested on data from the same session, and clearly outperformed 
decoders based directly on either the recorded multiunit neural 
activity (Fig. 5b) or the unaligned latent dynamics (see Extended 
Data Fig. 6). This observation held for all pairwise comparisons of 
days (Fig. 5c). We obtained similar results for the other three M1 
implants (Fig. 5d–f), even for data taken over 2 years. To summarize 
these comparisons, we computed a normalized predictive accuracy: 
the ratio of the across-day to within-day R2 (Fig. 5g). This analysis 
demonstrated that decoders based on the aligned latent dynamics 
predict behavioral features almost as well as those trained on same-
day neural recordings, a performance stability maintained over very 
long timespans.

Stable latent dynamics are not a byproduct of neural tuning 
to movement. An important remaining question is whether the 
observed stability in the latent dynamics could be a byproduct of sim-
pler phenomena. To test this possibility, we performed several control 

simulations. First, we created a surrogate dataset with latent dynam-
ics that were nonlinearly related to the actual latent dynamics of each 
day (Fig. 6a; see Methods and examples in Extended Data Fig. 7a).  
The surrogate neural activity preserved key features of the actual 
activity across the population (see Extended Data Fig. 7b–d) and 
the target-specific clustering within the neural manifold13 (Fig. 6b).  
Yet, this nonlinear transformation substantially decreased both 
alignment by CCA (Fig. 6c) and decoding of movement kinemat-
ics (Fig. 6d) across days, despite comparable within-day correla-
tions and predictions. We observed a similar decrease in CCs when 
using the tensor maximum entropy (TME) method2 to generate a 
surrogate neural population. Similar to our first control, TME dis-
torts the relationship between neural and behavioral dynamics, yet it 
preserves the covariance across neurons as well as across reach con-
ditions, thereby maintaining a measure of the neurons’ directional 
tuning (see Extended Data Fig. 7e,f; and see Methods). Thus, suc-
cessful alignment with CCA, such as we observed across days in our 
M1 data (Figs. 4 and 5), requires linearly stable latent dynamics.
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We also asked whether the observed stability of the latent 
dynamics could arise from movement tuning alone. We fitted a 
speed-dependent cosine tuning curve (see Methods) to each neu-
ron recorded on day 1, and separately to each neuron recorded 
on day n. We then simulated the activity of these two surrogate  
neural populations by passing the recorded movement kinematics 
for each of these 2 days through the corresponding tuning curves 
(Fig. 6e,f). If stable single-neuron tuning curves were sufficient to 
explain our observed long-term stability, CCA should bring the 
dynamics of the two simulated populations into good alignment. 
However, alignment of the simulated data (Fig. 6e) resulted in sub-
stantially lower CCs than those for the real data (Fig. 6g,h). This 
result establishes that the real neural population activity involves  
a degree of dynamic stability that is not a trivial consequence of  
stable movement tuning at the population level. Additional control 

analyses shown in Extended Data Fig. 8 further illustrate the insuf-
ficiency of movement tuning (see Extended Data Fig. 8a,b) and the 
necessity of precise temporal dynamics for alignment (see Extended 
Data Fig. 8c–g; and see Methods). Together, these quantitative  
controls demonstrate that, although tuning properties of individ-
ual units result in some degree of alignment, this single-neuron  
property is not sufficient to match the degree of latent dynamics 
alignment found in the real data.

PMd during movement planning. We next asked whether we 
might also observe stable latent dynamics in PMd activity during 
motor planning (Fig. 7a). Pre-movement planning activity in PMd 
captures many features of the subsequent behavior, including reac-
tion time27 and even the ability to learn22. We thus expected that 
consistent behavior would be preceded by stable motor planning 
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dynamics. We tested the stability of the PMd latent dynamics during 
planning using the same CCA alignment procedure that we used 
for M1 latent dynamics. As was the case for M1, despite changes in 
recorded neurons (see example in Extended Data Fig. 9a; see also 
Extended Data Figs. 3 and 4), the PMd latent dynamics for three 
monkeys were stable over weeks to months to a degree almost 
indistinguishable from that of within-day dynamics; in comparison,  
the unaligned across-day latent dynamics were quite different  
(Fig. 7c,d; and see Extended Data Fig. 9b,c).

We then tested whether these stable latent dynamics in PMd 
could be used to predict behavior. Previous work showed that the 
intended target of a movement can be predicted from the PMd 
planning activity before it occurs23. We used naive Bayesian classi-
fiers13, trained on either the full population activity or the aligned 
latent dynamics, to predict the upcoming reach target during the 
preparatory period before movement began (Fig. 7a; see Methods). 
We compared the across-day performance of this classifier with 
that of classifiers trained and tested within days. For monkey CL, 
the across-day classifier based on aligned latent dynamics main-
tained high accuracy (Fig. 7b,e; and see Extended Data Fig. 9d,e). 
In contrast, fixed classifiers show a steady, progressive performance 
decline when used with unaligned inputs (Fig. 7e; and see Extended 

Data Fig. 9d,e), The normalized classification accuracy—the ratio of 
the across-day accuracy to the within-day accuracy—shows that the 
aligned across-day classifiers predict almost as well as the within-
day classifiers for all three monkeys (Fig. 7f), providing further evi-
dence that stable latent PMd dynamics underlie consistent behavior.

S1 during feedback control. A third important aspect of the neu-
ral control of movement is the integration of sensory feedback. 
Proprioception, the sense of body positioning and movement, is 
critical for motor control, as shown by the deficits in movement 
coordination exhibited by patients with impaired proprioception20. 
In the present study, we examined area 2 of S1, a proprioceptive part 
of the brain that integrates feedback from cutaneous and muscle 
receptors18,19. Given the stability of latent dynamics during planning 
and execution in PMd and M1, we anticipated seeing similar sta-
bility in the activity of S1. Using S1 data recorded during reaching  
(Fig. 8a; and see Extended Data Fig. 10a), we found that latent 
dynamics in S1 for two different monkeys were stable for up to 
~45 days (Fig. 8b; and see Extended Data Fig. 10b). As with the 
other cortical regions, the normalized stability of the aligned latent 
dynamics was near the upper bound set by the within-day correla-
tions of latent dynamics (Fig. 8c).
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Last we tested whether the relationship between aligned latent 
dynamics and hand velocity was stable over time, using decoders 
similar to those used for M1 (Fig. 8a; and see Methods). Decoders 
based on the aligned latent dynamics provided stable predictions 
for both monkeys (Fig. 8d; and see Extended Data Fig. 10c,d). As 
was the case for the motor cortical regions, the accuracy of these 
predictions was similar to that of decoders trained and tested on the 
same day (Fig. 8d; and see Extended Data Fig. 10c,d). In contrast, 
the performance of fixed decoders based on recorded neural activ-
ity rapidly degraded across days. These results suggest that stable 
behavior is associated with stable latent dynamics throughout the 
sensorimotor cortex.

Discussion
Once learned, behaviors can be readily executed accurately and 
consistently. How the brain achieves this behavioral stability is still 
an open question. Existing readouts of neural activity have been 
fraught with the problem of ever-changing neurons, making it 
extremely difficult to answer questions about the long-term stabil-
ity of cortical dynamics. In the present study we have shown that 
repeated execution of a given behavior is accompanied by latent 
dynamics in several cortical sensorimotor areas that remain sta-
ble over remarkable lengths of time. These stable latent dynamics 
are associated with three main aspects of movement generation28:  
planning the upcoming movement, controlling its execution and 
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integrating somatosensory information. Moreover, the stabilized 
latent dynamics maintained a fixed relationship with the behavior: 
decoders based on the stabilized latent dynamics can predict behav-
ior up to 2 years after training almost as well as decoders tested on 
the same day as they are trained.

Although skilled movements can be remarkably consistent over 
a long period, prior studies disagree on the stability of movement 
information in single neurons over short periods of time (from 
1 day to 4 days), with some claiming inherent instability of tuning 
properties29 and others stability well within the error introduced by 
measurement noise11,17,30. However, none of these studies attempted 
to address changes in neural activity due to changing neural record-
ings, an intrinsic feature of multielectrode array recordings over 
extended periods (Fig. 3b,c; see also Extended Data Figs. 2–4, 9 
and 10). How could we find stable latent dynamics based on unsta-
ble neural recordings31? In the present study we assumed that the 

dynamics of cortical neurons are confined to a low-dimensional 
manifold1 (Fig. 1c). On each recording day, we could obtain only 
an empirical estimate of the latent dynamics. Our results showed 
that these empirical estimates varied greatly across days. However, 
our ability to align these dynamics supported the view that the true 
latent dynamics were stable when a given behavior was repeated. 
The differences across days arose from projecting the true latent 
dynamics on to the changing empirical neural spaces, which are 
determined by the neural recordings. This projection involved two 
linear transformations: first, the true latent dynamics within the full 
neural space—which incorporates all neurons modulated by the 
task—are projected on to the empirical neural space of the recorded 
neurons. This transformation involves a dimensionality reduc-
tion from at least 106 to 102. Then, second, the manifold embed-
ded within the empirical neural space is found; this transformation 
involves a dimensionality reduction from approximately 102 to 101 
for the relatively simple reaching behaviors that we and others have 
studied8. As both these operations are linear, it is not surprising that 
the latent dynamic alignment can be achieved with a linear method 
such as CCA. Given the ubiquity of linear analyses such as PCA in 
modern neuroscience experiments, our observation has important 
implications for understanding how neural populations throughout 
the brain consistently perform behaviorally relevant functions.

There remains the concern that CCA might be too powerful 
and could potentially find transformations that make unstable 
true latent dynamics appear stable. We argue against this sce-
nario. A nonlinear change in the intrinsic dynamics of the network 
would reduce the magnitude of the CCs attainable by alignment, 
as illustrated by our ‘nonlinear transformation’ control analysis  
(Fig. 6a–d; see also Extended Data Fig. 7a–d). In contrast, CCA 
should be able to compensate for any linear transformation to the 
latent dynamics. Although this necessarily includes the transfor-
mation resulting from changing neural recordings, there is still 
the possibility of additional linear transformations acting on indi-
vidual neurons, and resulting in linear changes in the true latent 
dynamics in the period between the 2 days being compared. Given 
the intrinsically nonlinear properties of neural networks6,21 com-
posed of nonlinear neurons connected by nonlinear synapses, it is 
difficult to assess either the likelihood or the behavioral relevance 
of such a linear transformation.

Our results emphasize the importance of low-dimensional neu-
ral population dynamics, a concept that has furthered our under-
standing of computation in the brain1,9. However, we should always 
question whether the observed properties could be a byproduct of 
simpler phenomena2. We asked whether the results reported in the 
present study could be explained by movement tuning properties of 
individual neurons. The control analyses and simulations (see Fig. 6 
and also Extended Data Figs. 7 and 8) reveal that, although tuning 
properties of single neurons result in some degree of alignment and 
decoder stability, they are insufficient to explain the degree of stabil-
ity that we observed in the real neural data. There is also an impor-
tant conceptual point: even if alignment could be improved through 
more sophisticated tuning models, this single-neuron approach 
will remain incomplete. The attempt to explain our stability results 
on the basis of movement-tuned neurons implies a computational 
view of the population as an ensemble of independent units, each 
endowed with a tuning curve. In this view, covariance between two 
neurons can arise only because similarities (or differences) between 
their tuning curves yield correlated (or anticorrelated) activity. This 
picture is necessarily incomplete, and leads to an underestima-
tion of co-variances that also arise because of common inputs and, 
more importantly, actual connectivity32. Our analyses demonstrate 
that the contribution of these factors to behaviorally relevant latent 
dynamics cannot be ignored. Recent work has established that the 
collective dynamics of neural populations are strongly influenced 
by network connectivity33–35, and that long-term learning is needed 
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to alter or extend the manifold3,22,36. We posit that a view of neural 
activity that ignores interactions between neurons and attempts to 
explain all pairwise correlations on the basis of their individual tun-
ing curves is bound to be incomplete, and thus insufficient to fully 
explain population dynamics.

It is important to note that we studied the neural dynamics under-
lying the planning and execution of a single, stereotyped reaching 
behavior. The corresponding neural dynamics are intimately and 
necessarily linked to this behavior. A different behavior, such as 
shaking a cocktail shaker, would require its own dynamics, although 
a comparative analysis of these two different behaviors might reveal 
some similarities. The extent to which latent dynamics are shared 
between behaviors is an area of active investigation. A recent study 
from our lab has shown both shared and behavior-specific compo-
nents in M1 latent dynamics when comparing different but related 
wrist movement and reach-to-grasp tasks5. Another study in mice 
has shown greater differences in M1 dynamics between forepaw 
reaching and quadrupedal locomotion37. These observations raise 
the concern that the stable latent dynamics we describe may trivi-
ally arise from our use of a consistent behavior. However, simula-
tion work by Sussillo et  al. provides an interesting argument that 
even consistent behavior is not necessarily associated with stable 
latent dynamics21. They trained recurrent neural networks (RNNs) 
to reproduce muscle activity (electromyography (EMG)) recorded 
during reaching. The network architecture had to be regularized to 
obtain good CCs between the simulated and actual latent dynamics; 
without this constraint, CCs were low, even though the RNN accu-
rately reproduced the EMG21. The consistent behavior, in this case 
represented by the EMG, was not necessarily associated with stable 
latent dynamics within the RNN. Given the convergence between 
motor cortex and spinal motoneurons, it is unsurprising that the 
neural dynamics associated with a particular behavioral output 
need not be unique. In addition, the latent dynamics in PMd are 
stable during motor planning, when no behavior has yet occurred. 
We thus propose that the stability of latent dynamics reported in the 
present study is not a trivial consequence of the consistent behavior, 
but rather reflects a fundamental feature of learned cortical function 
that leads to stable behavior.

Our results have important implications for BCIs that map 
neural activity on to control signals and promise to revolutionize 
rehabilitation and assistive technologies38. Many labs have used BCI 
decoders to control computer cursors23 and robots25, and even rean-
imate paralyzed limbs through electrical stimulation24. However, 
the neural activity that provides inputs to these decoders typically 
changes over weeks and months, leading to degraded BCI perfor-
mance39,40. Some groups have suggested that the use of local field 
potentials41,42 could reduce the magnitude of these changes, at the 
risk of reducing the amount of information available to the decoder. 
Other groups have been developing computational techniques to 
continually recalibrate these decoders and restore degraded func-
tion43. Although feasible, decoder recalibration may impose an 
undesirable cognitive burden on the user when compared with 
stabilizing the inputs to a fixed decoder. The stable latent dynam-
ics reported in the present study offer an intriguing alternative to 
previous approaches that attempted to align the statistics of neural 
activity44,45: decoders based on latent dynamics could be periodically 
aligned through a linear procedure such as CCA, thereby achieving 
stable performance for years. Recent work has further shown that 
population-based approaches can improve decoding stability6,26,46, 
enable unsupervised decoding44 or even adjust for changes in neural 
activity based on its statistics alone45.

In the present study, we have reported on the stable latent 
dynamics in three cortical areas that are closely tied to the result-
ing behavior28. We posit that the stabilities of both the behavior 
and the corresponding latent dynamics are intimately tied to each  
other. However, the population dynamics associated with a specific  

behavior differ across brain areas22,47, and thus could appear less 
stable in brain areas that are upstream from those studied here. 
For example, decision-making dynamics in the prefrontal cortex 
depend on the resulting behavior, but also on internal states (for 
example, arousal) and sensory inputs (for example, visual) that 
influence the behavioral decision. There could thus be different 
neural dynamics that reflect changes in internal state but underlie 
a stable behavioral output. Within the motor cortex, recent work 
indicates that the supplementary motor area, a ‘higher’ motor corti-
cal area, with activity reflecting motor timing48 or sequence produc-
tion47, exhibits more complex dynamics than what is consistently 
observed in M1 (ref. 47). Perhaps the dynamics of such areas are less 
stable over long spans of time, because their activity captures more 
than the observable behavioral output. Still, our results support the 
hypothesis that, when the activity of a brain area is intimately tied to 
a behavioral output, the underlying latent dynamics corresponding 
to stable behavior are preserved.

In conclusion, we have shown that the latent dynamics associ-
ated with the consistent execution of a given behavior can be stable  
for up to 2 years. This observation has broad implications for exper-
iments studying neural activity over time: the activity of individual 
neurons is best viewed as a sample of the underlying true latent 
dynamics1,7,8. Similar latent dynamics have been identified in many 
cortical regions (see reviews in refs. 1,9), and for a wide variety of 
functions, including working memory, decision-making, visual, 
olfactory and auditory discrimination, navigation and movement. 
Moreover, these latent dynamics exhibit some common character-
istics across cortical regions5,49 and even across species16,50. These 
commonalities suggest that the stabilization of latent dynamics may 
be ubiquitously exploited throughout the brain. Dimensionality 
reduction to uncover latent dynamics is increasingly accepted as 
a useful method for systems neuroscience research, because the 
low-dimensional manifold is more amenable to analysis and visu-
alization than the full neural space. In the present study, we have 
provided evidence that latent dynamics are not merely a convenient 
mathematical abstraction for model building, but the extant and 
stable building blocks of consistent behavior.

online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author 
contributions and competing interests; and statements of data and 
code availability are available at https://doi.org/10.1038/s41593-
019-0555-4.

Received: 11 November 2018; Accepted: 11 November 2019;  
Published: xx xx xxxx

References
 1. Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for 

the control of movement. Neuron 94, 978–984 (2017).
 2. Elsayed, G. F. & Cunningham, J. P. Structure in neural population  

recordings: an expected byproduct of simpler phenomena? Nat. Neurosci. 20, 
1310–1318 (2017).

 3. Sadtler, P. T. et al. Neural constraints on learning. Nature 512,  
423–426 (2014).

 4. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity versus identity coding in 
an olfactory system. Neuron 39, 991–1004 (2003).

 5. Gallego, J. A. et al. Cortical population activity within a preserved neural 
manifold underlies multiple motor behaviors. Nat. Commun. 9, 4233 (2018).

 6. Pandarinath, C. et al. Inferring single-trial neural population dynamics using 
sequential auto-encoders. Nat. Methods 15, 805–815 (2018).

 7. Trautmann, E. M. et al. Accurate estimation of neural population dynamics 
without spike sorting. Neuron 103, 292–308 (2019).

 8. Gao, P. et al. A theory of multineuronal dimensionality, dynamics and 
measurement. Preprint at bioRxiv https://doi.org/10.1101/214262 (2017).

 9. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale 
neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

NAtuRE NEuRoSCiENCE | www.nature.com/natureneuroscience

https://doi.org/10.1038/s41593-019-0555-4
https://doi.org/10.1038/s41593-019-0555-4
https://doi.org/10.1101/214262
http://www.nature.com/natureneuroscience


ArticlesNature NeuroscieNce

 10. Dickey, A. S., Suminski, A., Amit, Y. & Hatsopoulos, N. G. Single-unit 
stability using chronically implanted multielectrode arrays. J. Neurophysiol. 
102, 1331–1339 (2009).

 11. Stevenson, I. H. et al. Statistical assessment of the stability of neural 
movement representations. J. Neurophysiol. 106, 764–774 (2011).

 12. Dekleva, B. M., Kording, K. P. & Miller, L. E. Single reach plans in dorsal 
premotor cortex during a two-target task. Nat. Commun. 9, 3556 (2018).

 13. Santhanam, G. et al. Factor-analysis methods for higher-performance neural 
prostheses. J. Neurophysiol. 102, 1315–1330 (2009).

 14. Rathelot, J.-A. & Strick, P. L. Muscle representation in the macaque  
motor cortex: an anatomical perspective. Proc. Natl Acad. Sci. USA 103, 
8257–8262 (2006).

 15. Morrow, M. M. & Miller, L. E. Prediction of muscle activity by populations of 
sequentially recorded primary motor cortex neurons. J. Neurophysiol. 89, 
2279–2288 (2003).

 16. Churchland, M. M. et al. Neural population dynamics during reaching. 
Nature 487, 51–56 (2012).

 17. Cherian, A., Fernandes, H. L. & Miller, L. E. Primary motor cortical 
discharge during force field adaptation reflects muscle-like dynamics.  
J. Neurophysiol. 110, 768–783 (2013).

 18. London, B. M. & Miller, L. E. Responses of somatosensory area 2 neurons to 
actively and passively generated limb movements. J. Neurophysiol. 109, 
1505–1513 (2013).

 19. Prud’homme, M. J. & Kalaska, J. F. Proprioceptive activity in primate primary 
somatosensory cortex during active arm reaching movements. J. Neurophysiol. 
72, 2280–2301 (1994).

 20. Sainburg, R. L., Ghilardi, M. F., Poizner, H. & Ghez, C. Control of limb 
dynamics in normal subjects and patients without proprioception.  
J. Neurophysiol. 73, 820–835 (1995).

 21. Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural 
network that finds a naturalistic solution for the production of muscle 
activity. Nat. Neurosci. 18, 1025–1033 (2015).

 22. Perich, M. G., Gallego, J. A. & Miller, L. E. A neural population mechanism 
for rapid learning. Neuron 100, 964–976.e7 (2018).

 23. Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A. & Shenoy, K. V. A high-
performance brain–computer interface. Nature 442, 195–198 (2006).

 24. Ethier, C., Oby, E. R., Bauman, M. J. & Miller, L. E. Restoration of grasp 
following paralysis through brain-controlled stimulation of muscles. Nature 
485, 368–371 (2012).

 25. Collinger, J. L. et al. High-performance neuroprosthetic control by an 
individual with tetraplegia. The Lancet 381, 557–564 (2013).

 26. Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Making 
brain–machine interfaces robust to future neural variability. Nat. Commun. 7, 
13749 (2016).

 27. Churchland, M. M. Neural variability in premotor cortex provides a signature 
of motor preparation. J. Neurosci. 26, 3697–3712 (2006).

 28. Scott, S. H. Optimal feedback control and the neural basis of volitional motor 
control. Nat. Rev. Neurosci. 5, 532–545 (2004).

 29. Rokni, U., Richardson, A. G., Bizzi, E. & Seung, H. S. Motor learning with 
unstable neural representations. Neuron 54, 653–666 (2007).

 30. Chestek, C. A. et al. Single-neuron stability during repeated reaching in 
macaque premotor cortex. J. Neurosci. 27, 10742–10750 (2007).

 31. Nonnenmacher, M., Turaga, S. C. & Macke, J. H. Extracting low-dimensional 
dynamics from multiple large-scale neural population recordings by learning 
to predict correlations. Adv. Neural Inf. Process. Syst. 30, 5702–5712 (2017).

 32. Stevenson, I. H., Rebesco, J. M., Miller, L. E. & Körding, K. P. Inferring 
functional connections between neurons. Curr. Opin. Neurobiol. 18,  
582–588 (2008).

 33. Wärnberg, E. & Kumar, A. Perturbing low dimensional activity manifolds in 
spiking neuronal networks. PLoS Comput. Biol. 15, e1007074 (2019).

 34. Mastrogiuseppe, F. & Ostojic, S. Linking connectivity, dynamics, and 
computations in low-rank recurrent neural networks. Neuron 99,  
609–623.e29 (2018).

 35. Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering 
perception. Science 365, eaaw5202 (2019).

 36. Oby, E. R. et al. New neural activity patterns emerge with long-term learning. 
Proc. Natl Acad. Sci. USA 116, 15210–15215 (2019).

 37. Miri, A. et al. Behaviorally selective engagement of short-latency effector 
pathways by motor cortex. Neuron 95, 683–696.e11 (2017).

 38. Bensmaia, S. J. & Miller, L. E. Restoring sensorimotor function through 
intracortical interfaces: progress and looming challenges. Nat. Rev. Neurosci. 
15, 313–325 (2014).

 39. Chestek, C. A. et al. Long-term stability of neural prosthetic control signals 
from silicon cortical arrays in rhesus macaque motor cortex. J. Neural Eng. 8, 
045005 (2011).

 40. Wu, W. & Hatsopoulos, N. G. Real-time decoding of nonstationary  
neural activity in motor cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 
213–222 (2008).

 41. Stavisky, S. D., Kao, J. C., Nuyujukian, P., Ryu, S. I. & Shenoy, K. V.  
A high performing brain–machine interface driven by low-frequency  
local field potentials alone and together with spikes. J. Neural Eng. 12,  
036009 (2015).

 42. Flint, R. D., Scheid, M. R., Wright, Z. A., Solla, S. A. & Slutzky, M. W. 
Long-Term Stability of motor cortical activity: implications for brain  
machine interfaces and optimal feedback control. J. Neurosci. 36,  
3623–3632 (2016).

 43. Orsborn, A. L. et al. Closed-loop decoder adaptation shapes neural plasticity 
for skillful neuroprosthetic control. Neuron 82, 1380–1393 (2014).

 44. Dyer, E. L. et al. A cryptography-based approach for movement decoding. 
Nat. Biomed. Eng. 1, 967–976 (2017).

 45. Farshchian, A. et al. Adversarial domain adaptation for stable brain–machine 
interfaces. in International Conference on Learning Representations (ICLR) 
https://openreview.net/forum?id=Hyx6Bi0qYm (2019).

 46. Kao, J. C., Ryu, S. I. & Shenoy, K. V. Leveraging neural dynamics to extend 
functional lifetime of brain–machine interfaces. Sci. Rep. 7, 7395 (2017).

 47. Lara, A. H., Cunningham, J. P. & Churchland, M. M. Different population 
dynamics in the supplementary motor area and motor cortex during 
reaching. Nat. Commun. 9, 2754 (2018).

 48. Remington, E. D., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible 
sensorimotor computations through rapid reconfiguration of cortical 
dynamics. Neuron 98, 1005–1019.e5 (2018).

 49. Kobak, D. et al. Demixed principal component analysis of neural population 
data. eLife 5, e10989 (2016).

 50. Pandarinath, C. et al. Neural population dynamics in human motor cortex 
during movements in people with ALS. eLife 4, e07436 (2015).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020

NAtuRE NEuRoSCiENCE | www.nature.com/natureneuroscience

https://openreview.net/forum?id=Hyx6Bi0qYm
http://www.nature.com/natureneuroscience


Articles Nature NeuroscieNce

Methods
Behavioral task. We trained six monkeys to sit in a primate chair and make 
reaching movements using a customized planar manipulandum. All six of the 
monkeys performed a similar two-dimensional center–out task (see Fig. 2a) for 
long periods of time; across all monkeys we collected 137 days of data, across 
timespans of between 3 weeks and approximately 2 years. In the task, the monkey 
moved its hand to the center of the workspace to begin each trial. After a variable 
waiting period, the monkey was presented with one of eight outer targets (or four 
targets for monkey H), equally spaced in a circle and selected randomly with 
uniform probability. Monkeys C, M and T were trained to hold during a variable 
delay period, during which the target remained visible before receiving an auditory 
go cue. Monkeys P and H were not subjected to this delay period. Early recordings 
from monkey C also omitted this instructed delay period, although it was later 
trained on the delayed version of the task. With respect to our main results, we 
saw no difference between these groups of sessions. To receive a liquid reward, the 
monkeys were required to reach the outer target within 1 s. Monkeys C, M and T 
were required to hold within that outer target for 0.5 s. For monkey P and early 
sessions with monkey H, this outer target hold period was omitted. Monkey H was 
later subject to a brief hold period of 100 ms, to ensure that it decelerated to end 
the reach within the target. Thus, there were some kinematic differences between 
the early and later sessions with monkey H; as much of the movement was similar, 
we observed similar results even when all of the recordings and all sessions were 
considered. Monkey C initially performed the task using the left hand; later, it used 
the right hand during experiments with multielectrode arrays implanted in the 
opposite hemisphere (monkeys CL and CR). As the monkeys performed this task, 
we recorded the position of the endpoint at a sampling frequency of 1 kHz using 
encoders in the joints, and digitally logged the specific timing of task events such 
as the go cue.

Behavioral data analysis. In all of the following analyses, we considered only 
the trials in which the monkey successfully achieved the outer target within the 
specified time and received a reward. We then sub-selected trials such that all 
sessions contained an equal number of reaches in each of the target directions. 
Within each trial, we isolated a window of interest that captured most of the 
movement. Comparison of the dynamics requires each trial on each day to have 
the same number of data points. We thus adjusted this window slightly according 
to the behavioral idiosyncrasies (reaching speed, and so on) of each monkey, so 
as to maximize the number of samples while preserving an equal number of data 
points across trials. For example, monkeys with naturally slower reach speeds were 
assigned longer windows. Our results were qualitatively unchanged with reasonable 
adjustments to this window. For monkeys M, T, C and J we used a window starting 
120 ms before movement onset and ending 420 ms after movement onset. For 
monkeys P and H, we used windows beginning at the go cue and ending after 
570 ms or 660 ms, respectively.

We performed all subsequent analyses by comparing all pairs of sessions 
performed by each monkey, only looking forward in time. For example, with  
3 days of recordings, we compared day 1 with day 2, day 1 with day 3 and day 2 
with day 3. In general, when a recording on day j was compared with a subsequent 
recording on day n, the result was assigned to (n − j) days between sessions.  
First, we studied the hand kinematics to assess behavioral consistency. We took 
the derivative of the endpoint position to compute the endpoint velocity. Within 
each session, we ordered all trials by reach direction and concatenated all trials. 
As the trials were sub-selected to equalize the counts across both time and reach 
directions (last column of Supplementary Table 1), the resulting data matrices 
were of equal size for all days. Each matrix entry represented a data point from 
the same time sample and target across all days, allowing for a point-by-point 
direct comparison of dynamics. To assess the stability of behavior over time, we 
computed the correlation (Pearson’s r) for the two-dimensional velocity signals 
between pairs of days in all possible combinations.

Neural implants. All surgical and experimental procedures were approved by the 
Institutional Animal Care and Use Committee of Northwestern University. To 
record chronically from populations of cortical neurons, we implanted 96-channel 
Utah electrode arrays in the M1, PMd or S1 using standard surgical procedures. 
Monkeys T (male, Macaca fascicularis) and M (male, Macaca mulatta) were 
implanted in the PMd of the right hemisphere; monkey M also received a second 
array in the right M1 by the same procedure. Monkey C (male, M. mulatta)  
received two implants: first, a single array in the right M1 (denoted by CR 
throughout the text), followed years later by implants in both the M1 and PMd 
of the left hemisphere (denoted by CL). Monkey J (male, M. mulatta) received an 
array in the left M1. Both Monkeys P and H (male, M. mulatta) received arrays in 
S1 (Brodmann’s area 2) of the left hemisphere. Supplementary Table 1 summarizes 
the implants and sessions of neural recordings for each monkey.

Neural activity was recorded during the behavior using a Cerebus system 
(Blackrock Microsystems). The recordings on each channel were digitized, band-
pass filtered (250–5,000 Hz) and then converted to spike times based on threshold 
crossings. The threshold was set according to the root-mean square (RMS) 
activity on each channel (monkeys C, M, T and J: 5.5 × RMS; monkey P: 4 × RMS; 
monkey H: 5 × RMS). Although most of the analyses of the present study focus 

on the multiunit threshold crossings on each recording channel, we also manually 
spike sorted the recordings from monkeys M, C and T, to identify putative single 
neurons, which we used in the control analyses for M1, as well as in the tracking 
across days analysis (see below).

Tracking single neurons over days. For all sessions recorded with monkeys 
C, M and T, we sorted the waveforms that exceeded the threshold to identify 
putative single neurons. Each of these sorted units can be uniquely described by 
its waveform shape and its inter-spike interval distribution. We applied a statistical 
test based on these metrics to determine whether or not a given neuron was 
recorded on 2 different days10. In brief, the waveform shape and inter-spike interval 
of two neurons, recorded on a given electrode on 2 different days, was compared 
against a null distribution taken from neurons recorded on all other electrodes, 
and thus known to be from different neurons. Cells were considered to match if the 
joint probability of both metrics matching was <0.01.

Analysis of neural spatial tuning across days. We described the spatial tuning of 
the multiunit activity recorded by each electrode using cosine tuning curves51–53. 
On each recording electrode, we computed the average firing rate within the time 
window used for decoding or classification (during motor execution for M1 and 
S1, and during motor planning for PMd, respectively). For each session, we then 
averaged across all trials for each reach direction and used linear regression to fit 
the tuning curve according to:

f ¼ bþ a cosðθ � θ*Þ
where b is the baseline mean firing rate, a the depth of modulation and θ* the 
preferred direction51; these three parameters describe the directional tuning of the 
average firing rate f for each recording electrode. For each electrode, we tracked the 
changes in the parameters of this model across all pairs of days for which neural 
activity was recorded on that electrode on both days. For this subset of electrodes, 
we assessed the magnitude of the change in mean firing rate, modulation depth and 
preferred direction, the last as a circular difference.

Neural latent dynamics analysis. To characterize the dynamics of the latent 
activity associated with the recorded neural activity in each session, we computed 
a smoothed firing rate as a function of time for the multiunit activity on each 
electrode. We obtained these smoothed firing rates by applying a Gaussian kernel 
(s.d.: 50 ms) to the binned square-root-transformed firings (bin size: 30 ms) of 
each recorded multiunit54. We excluded electrodes the activity of which had a low 
mean firing rate (<1 Hz mean firing rate across all bins), but did not perform any 
additional preselection, such as based on directional tuning. For each session, this 
produced a neural data matrix X of dimension n by T, where n is the number of 
recorded units and T the total number of time points from all concatenated trials 
on a given day; T is thus given by: number of targets per day × number of trials 
per target × number of time points per trial. We performed this concatenation as 
described above, by sub-selecting the same number of trials for all sessions and 
targets for each monkey (see Supplementary Table 1) and ordering the data points 
by time and target. For the analysis of M1 and S1 activity, we considered the same 
window of interest during a trial as we did for the behavioral analysis (see above); 
these values were chosen to represent movement execution in M1 and feedback 
control in S1. For the PMd activity, we analyzed the preparatory activity within a 
window aligned with movement onset, starting 390 ms before movement onset and 
ending 60 ms after movement onset. This window started after the putative visual 
response elicited by the target presentation12,55, and it was advantageous because 
it included mostly preparatory activity, although also some of the dynamics of the 
transition from preparation to movement.

For each session, the activity of n recorded multiunits was represented as a 
neural space, an n-dimensional sampling of the neural space of the cortical area of 
interest. In this space, the joint recorded activity is represented as a single point, 
the coordinates of which are determined by the firing rate of the corresponding 
multiunits (see, for example, Fig. 1d). Within this space, we computed the low-
dimensional manifold by applying PCA to X. This yielded n PCs, each a linear 
combination of the smoothed firing rates of all n recorded units. These PCs are 
ranked based on the amount of neural variance they explain. We defined an 
m-dimensional, session-specific manifold by keeping only the leading m PCs, 
which we refer to as neural modes (Fig. 1d). Based on previous work by our group 
and others3,5,22, we chose the following dimensionality values: m = 10 for M1, 
m = 15 for PMd, m = 8 for S1. The specific choice of m is not critical, because our 
results held across a broad range of m values (see Extended Data Fig. 5a–c).

We computed the latent dynamics within the manifold by projecting the time-
dependent smoothed firing rates of the recorded neurons on to the PCs that span 
the manifold. This produced a data matrix L of dimensions m by T, where m is 
the dimensionality of the manifold. Recent theoretical and experimental work 
has demonstrated that, when the recorded neural activity is projected on to the 
low-dimensional manifold to obtain the latent dynamics, the result is not sensitive 
to whether the manifold was estimated on the basis of single units or multiunits7. 
Nevertheless, we repeated all the analyses for a subset of three monkeys with M1 
implants by using putative single neurons to obtain the manifold, and verified that 
our results held (see Extended Data Fig. 5d,e).
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Alignment of latent dynamics across days. The substantial turnover across days 
observed in our neural recordings (see Extended Data Figs. 3 and 4) implies that 
the neural space in which the experimentally accessible manifold and the latent 
dynamics are embedded changed across days. Our hypothesis predicts that the  
true latent dynamics associated with consistent behavior should be stable across 
days. To verify this hypothesis, we need to compensate for the fact that the true 
latent dynamics are being projected on to different manifolds on different days.  
If our hypothesis is correct, we expect to be able to compensate for this change  
in the embedding space by using CCA5,21,56. Given the concatenated single-
trial latent dynamics LA and LB from 2 days, A and B, CCA finds that linear 
transformations that applied to LA and LB make the corresponding latent dynamics 
maximally correlated.

CCA starts with a QR decomposition of the transposed latent dynamics 
matrices LA and LB, LTA ¼ QARA

I
, LTB ¼ QBRB

I
. The first m column vectors of Qi, 

i = A,B, provide an orthonormal basis for the column vectors of LTi ; i ¼ A;B
I

. We 
then construct the m by m inner product matrix of QA and QB and perform a 
singular value decomposition to obtain:

QT
AQB ¼ USVT

CCA finds new manifold directions to maximize the pairwise correlations 
across the 2 days. The projection of the latent dynamics on to these new manifold 
directions is implemented through the corresponding m by m matrices:

MA ¼ R�1
A U; MB ¼ R�1

B V

These transformations result in latent dynamics projected on to new  
manifold axes:

~L
T
A ¼ LTAMA; ~L

T
B ¼ LTBMB

The CCs between the unaligned latent dynamics are the pairwise  
correlations between the rows of LA and LB, given by LALTB :

I
 The CCs after 

alignment are the pairwise correlations between the rows of ~LA
I

 and ~LB;
I

 given by 
~LA~L

T
B ¼ UTQT

AQBV¼S
I

. The elements of the diagonal matrix S are the resulting 
CCs, sorted from largest to smallest; they quantify the similarity in the aligned 
latent dynamics. To provide stable input to a decoder, the latent dynamics of day B 
are aligned to those of day A by LTBMB MAð Þ�1:

IWe used the within-day variability in the latent dynamics across blocks of trials 
for a given day to obtain an upper bound for the across-day CCs. We split all the 
trials in 1 day into two nonoverlapping sets of trials, ensuring that the groups were 
matched by target and time points, and performed CCA on the latent dynamics 
(100 repetitions). The mean value for each of the top four of the ordered CCs 
in this distribution was used to define the within-day CCs. To represent more 
compactly how the alignment process compensates for the changes in latent 
dynamics due to neural turnover and its resultant change in embedding space, 
we computed the normalized similarity, the ratio of the across-day aligned or 
unaligned CCs to the upper bound provided by the within-day CCs.

Decoding hand velocity from motor and somatosensory neural activity. To test 
whether the aligned latent dynamics in M1 and S1 maintain movement-related 
information, we built linear decoders to predict the two-dimensional hand  
velocity from neural data. Our hypothesis was that the aligned latent dynamics 
should provide accurate predictions of hand kinematics over time. To test this 
hypothesis, we compared the predictive accuracy of three different types of 
decoders: (1) a within-day neural decoder trained and tested on the same day 
based on the recorded neural activity; (2) an across-day neural decoder  
trained on the neural activity recorded on the first day and tested on neural  
activity recorded on subsequent days; and (3) an across-day latent decoder  
trained on the latent dynamics of the first day and tested on the aligned latent 
dynamics of subsequent days.

All decoders were standard Wiener filters57 that used as inputs the neural 
activity, either the multiunit firing rates for the within-day and across-day neural 
decoders or the across-day aligned latent dynamics. We also included three bins 
of recent spiking history, for a total of 90 ms. These additional neural inputs 
incorporate information about intrinsic neural dynamics and account for axonal 
transmission delays. When decoding from M1, the activity of which causes the 
ensuing movement, the additional bins preceded hand velocity signals. When 
decoding from S1, the activity of which is largely in response to the executed 
movement, the additional bins lagged behind hand velocity signals. The R2 
value between actual and predicted hand velocity was used to quantify decoder 
performance as a predictive accuracy. We built separate decoders to predict X and 
Y hand velocities; as their performances were similar, we report their mean.

The within-day decoder was trained and tested on the same session, using a 
sixfold cross-validation procedure to protect against overfitting. Before splitting 
the recorded neural activity for the session into six blocks, the corresponding trials 
were shuffled to remove any bias due to time through the session. The R2 values for 
the six test blocks were averaged to obtain a final reported value. The within-day 
performance provided an upper bound to the performance of across-day decoders. 
The across-day neural decoders were computed for all pairwise combinations of 

days, with training on the neural activity recorded on the first of the 2 d and testing 
on the later day. The across-day aligned decoders were trained on the latent activity 
of the first of the 2 d and tested on latent dynamics of the later day after alignment. 
To compare across all sessions and monkeys more easily, we normalized the across-
day predictive accuracy by dividing it by the within-day predictive accuracy to 
obtain the normalized predictive accuracy.

Predicting target direction from PMd planning activity. We trained naive Bayes 
classifiers to predict the direction of the upcoming movement based on pre-
movement planning activity13. For each of the three monkeys, we used PMd neural 
activity recorded during a 450-ms window as inputs to the classifier (see “Neural 
latent dynamics analysis” above). This window focused primarily on the planning 
period before movement onset. As we did for movement prediction, we trained 
three types of classifiers: within day based on recorded neural activity, across day 
based on recorded neural activity and across day based on aligned latent dynamics. 
Within the input window, we averaged all activity to obtain a single value 
representing the activity for that trial, resulting in either an n-dimensional neural 
input or an m-dimensional latent input (whether aligned or unaligned).

The naive Bayes classifiers, trained using Matlab (fitcnb), provided a 
probabilistic assignment of the inputs to one of eight classes, corresponding to the 
eight possible target directions. The predicted class was that with the maximum 
posterior probability. Predicted classes were assumed to be independent, hence the 
classifiers were naive. To ensure that all targets had the same prior probability, the 
training data included the same number of trials for each target.

Performance of the trained classifiers was quantified by the percentage of 
correct classifications. To quantify the performance of the within-day classifiers, 
we performed a cross-validation procedure in which we left out one random trial 
for each target and trained the classifier on the remaining data. We then tested 
the classifier on this left-out sample. We repeated this procedure 100 times and 
averaged the test performance. As before, we normalized the performance of the 
across-day classifiers by dividing it by the within-day performance to compute the 
normalized accuracy.

Control analyses. We constructed a scenario in which the latent dynamics were 
changed to prevent their alignment by CCA while preserving the statistics of 
single-unit properties, such as mean firing rate and directional tuning across the 
population (Fig. 6a,b; see also Extended Data Fig. 7a–d). We started from day 1 
data for monkey CL. We computed a ten-dimensional manifold using PCA and 
projected the neural trajectories of day 1 into this manifold to obtain the latent 
dynamics. We then artificially simulated ‘day n’ data with novel latent dynamics 
by applying a nonlinear transformation to the latent dynamics of day 1, namely 
a point-by-point product of each trial’s latent dynamics with a cosine function 
that had a period equal to the duration of the trial to preserve the smoothness of 
the temporal traces. The transposed PC transformation was then used to project 
the simulated day n latent activity on to the population of recorded neurons. This 
artificially generated population activity of day n was then compared with the 
recorded activity of the neural population on day 1 (Fig. 6c,d).

In addition, we used the TME2 algorithm to generate surrogate datasets that 
share some specified set of primary features with the original neural data but are 
otherwise random. This control was specifically designed to investigate whether 
results based on population analysis can be explained by the statistical properties 
of single neurons alone. In the present study, we used TME to generate surrogate 
populations of neurons in which the covariance across both neurons and reach 
conditions (a proxy for directional tuning) was preserved, but the temporal 
covariance associated with neural dynamics was not (see Extended Data Fig. 7e). 
We then used PCA to obtain the manifold on to which the surrogate population 
dynamics were projected to obtain latent dynamics, and CCA to align the latent 
dynamics of the surrogate population to those of the recorded population (see 
Extended Data Fig. 7f).

We also ran a simulation to determine the extent to which the stability of latent 
dynamics results from the movement tuning of individual neurons. To quantify 
this effect, we fitted speed-dependent cosine tuning curves52 to the activity of each 
neuron recorded on day 1, and separately to each neuron recorded on day n. The 
tuning curves used in the simulation were not chosen arbitrarily, but to represent 
the actual neural data as closely as possible. We then generated two surrogate 
neural populations, one for day 1 and one for day n, with activity based on the 
recorded movement kinematics for those 2 days, passed through the corresponding 
fitted tuning curves (see Fig. 6e; examples of surrogate neural activity are shown 
in Fig. 6f). We then proceeded as in the analysis of real data: we computed the 
manifold of the day 1 surrogate population and of the day n surrogate population, 
and attempted to align the latent dynamics within these two manifolds using CCA. 
If the attempt at alignment results in substantially lower CCs than those resulting 
from the alignment of the real data for those 2 days, we must conclude that there 
are meaningful dynamics within the real neural population activity that facilitate 
alignment and are not a trivial consequence of the movement tuning (Fig. 6g,h).

We performed an additional control in which each day we split the recorded 
neurons into two subpopulations based on the movement tuning of each neuron 
(see Extended Data Fig. 8a). We fitted speed-dependent cosine tuning curves to 
the activity of each unit52. We then set a threshold corresponding to an R2 value 
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of 0.6 for the cosine fits across all neurons. We separated the neurons into two 
classes: those with R2 greater than the threshold were labeled as ‘tuned’ and those 
with R2 below this threshold were labeled as ‘untuned’. We checked whether the 
latent dynamics of the subpopulation of untuned units could be aligned to the 
latent dynamics of the whole recorded population as well as the latent dynamics 
of the tuned subpopulation could be (see Extended Data Fig. 8b). Results were not 
sensitive to the actual value of the threshold used to split the units recorded on 
each day into tuned and untuned subpopulations.

As a final control, we quantified the amount of correlation that could be 
achieved when alignment was implemented based on the static properties of the 
neural activity associated with each reach, as opposed to the corresponding latent 
dynamics. To this end, we abandoned the 30-ms resolution used to track neural 
activity during individual trials, and represented the activity of each neuron in 
each trial by its average firing rate in the 300-ms interval after movement onset 
(see Extended Data Fig. 8c). For each session, this resulted in a neural data matrix 
X of dimension n by T, where n is the number of recorded units and 𝑇 is the 
number of targets per day × number of trials per target, because there is only one 
firing rate per neuron per trial. We analyzed this data matrix as before, reducing 
the dimensionality from n to m = 10 using PCA, then applying CCA to align the 
resulting target-specific clusters across days (see Extended Data Fig. 8d). We then 
projected the latent dynamics on to these cluster-aligned manifold axes. Similarity 
(correlation) and corresponding normalized similarity were computed as before 
(see Extended Data Fig. 8e–g) and then compared with those achieved when the 
alignment was based on the latent dynamics.

Statistics. We applied statistical tests to compare results for the across-day recorded 
neural activity and the across-day aligned latent dynamics. For all statistical tests, 
we used distributions that had been scaled by dividing by the within-day values, 
for either CCs or decoding and classification performance. We used a two-sided 
Wilcoxon’s rank-sum test to compare the distributions, which were not necessarily 
assumed to be normal. Throughout all analyses we used a significance threshold of 
P < 0.001. No statistical methods were used to predetermine sample sizes, although 
our dataset included a large number of sessions and subjects, many more than 
typical studies in the field. The data analysis supporting our conclusions required 
no experimental intervention, so no randomization into groups was needed and 
the experimenters were not blinded to the nature and goals of the experiment.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets analyzed for this manuscript will be shared upon reasonable request.

Code availability
All analyses were implemented using custom Matlab (The Mathworks Inc.) code. 
Code to replicate the main results will be shared upon reasonable request.
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Extended Data Fig. 1 | Additional data: task description and consistent behavior. (a-f) Correlation between direction-matched single trial X and Y hand 
velocities across all pairs of days (single dots: individual trials; lines: linear fits) from Monkey CL (a), Monkey J (b), Monkey M (c), Monkey T (d), Monkey P (e),  
and Monkey H (f). The inset in (c) shows X and Y hand trajectories for three example sessions. Trajectories are color coded by target as in Fig. 2.
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Extended Data Fig. 2 | Additional data: example neural activity during reaching on two days from Monkey CR. Each row shows the firing rates on a 
different electrode for Day 27 (left column) and Day 43 (right column). Each color represents a different sorted neuron. The eight plots arranged in a 
circular manner show the firing rate as a function of time during a reach to each of the eight targets, aligned on movement onset and averaged across all 
trials to the same target. The inset in the top left of each panel shows the average waveform of each sorted neuron; the inset at the top right shows the ISI 
distribution for each sorted neuron. Inset scale bars: horizontal, 400 µs; vertical, 200 µV.
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Extended Data Fig. 3 | Additional data: neural recording stability. (a) We manually spike-sorted the neural recordings from Monkeys C, M, and T to 
establish whether the same neurons were recorded across days (Methods; Extended Data Fig. 2 shows example neurons). Plots show the average action 
potential waveform of example sorted neurons for two datasets: Day 27 and Day 43 from Monkey CL. Note the large apparent turnover after 15 days. 
Right insets: example action potential waveforms and inter-spike interval (ISI) histograms for two neurons that were matched across days. (b) To quantify 
the turnover effect, we tracked both firing rate statistics and waveform shape of each neuron; these figures show the percentage of individual sorted M1 
neurons that were matched across pairs of days based on action potential waveforms and inter-spike interval (ISI) histograms. Data from Monkey CL (top), 
Monkey CR (middle; inset highlights the first 35 days), and Monkey M (bottom; inset highlights the first 50 days). (c) Percentage of individual sorted PMd 
neurons that were matched across pairs of days as in (b). Data from Monkey CL (top), Monkey M (middle), and Monkey T (bottom).
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Extended Data Fig. 4 | Additional data: neural tuning stability. For each implant: change in mean firing rate (top plot), modulation depth (middle plot), 
and preferred direction (bottom plot) of standard cosine tuning fits to multiunit activity across all pairs of days. Line and shaded areas: mean ± s.e.m. 
Plots are grouped by implant and brain area (M1: left; PMd: middle; S1: right). Error bars: 95% confidence interval of linear fit. n: number of across-day 
comparisons.
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Extended Data Fig. 5 | Additional data: controls for the alignment procedure using M1 data. (a) Correlation of the aligned (CCs; red) and unaligned 
(Pearson’s r; orange) M1 latent dynamics averaged over the top four neural modes across all pairs of days from Monkey CL using a 6-D manifold (single 
dots: pairs of days; lines: linear fits). (b) Normalized similarity of the aligned and unaligned M1 latent dynamics in the 6-D neural manifold for Monkey 
CL. (c) Mean and s.e.m. for normalized similarity distributions as shown in (b), for all four M1 implants for 6, 8, 10, and 12-D manifolds. The 10-D data 
presented here summarizes the distributions shown in Fig. 4. The significance of the separation between aligned and unaligned distributions held 
regardless of the choice of neural manifold dimensionality. N values are the same as for the corresponding distributions in Fig. 4. (d) Correlation (CCs) 
of the M1 latent dynamics averaged over the top four neural modes across all pairs of days from Monkey CL using sorted neurons rather than multiunit 
activity (single dots: pairs of days; lines: linear fits). (e) Normalized similarity of the aligned and unaligned M1 latent dynamics in the 10-D manifold 
obtained using sorted neurons for Monkeys CL, CR, and M. Error bars: mean ± s.d. n: number of across-day comparisons.
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Extended Data Fig. 6 | Additional data: movement decoding-based controls for the alignment procedure. (a) Predictive accuracy when decoding hand 
velocity for all pairs of days from Monkey CL using the unaligned latent dynamics as inputs instead of the multiunit activity used in Fig. 5. (b) Predictive 
accuracy when using as inputs the latent dynamics within-day and across-day both before and after alignment, for Monkeys CL, CR, and M. *** denotes  
p < 0.001, two-sided Wilcoxon rank-sum test. Error bars: mean ± s.d. n: number of across-day comparisons.
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Extended Data Fig. 7 | Additional data: Altering neural temporal dynamics prevents their alignment. (a) Simulation showing that movement  
tuning does not account for unchanging latent dynamics, as in Fig. 6a–d. Latent dynamics from Day 1 (purple curves) are nonlinearly but smoothly 
transformed into latent dynamics of Day n (pink curves). The latent dynamics are shown as projections onto the four leading neural modes. (b) This 
transformation preserves neural firing statistics across the population. N=88 neurons; box plot shows median and 25th/75th percentiles, whiskers  
show range. (c,d) The statistics of preferred directions are also well-preserved across the population. Panels (a-d) present data pooled across all  
sessions from Monkey CL. (e) As an additional control, we used the TME method to generate simulated population neural activity that preserved the 
covariance across neurons and conditions (targets), while the covariance over time (dynamics) was not constrained to be preserved. Example data from 
Monkey CR. Legend: Cov. T: covariance over time; Cov. N: covariance across neurons; Cov. Tgt: covariance across targets. (f) Distribution of the averaged 
top four CCs between the simulated data and the recorded data for M1 recordings from three monkeys (grey). The distribution for the within-day averaged 
top four CCs for the recorded data (black) is shown for reference. ***: p< 0.001, two-sided Wilcoxon rank-sum test. Error bars: mean ± s.d. n: number of 
within-session comparisons.
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Extended Data Fig. 8 | Additional control data: Stable latent dynamics are not a byproduct of single neuron tuning to movement. (a) Contribution to  
the latent dynamics from tuned vs untuned neurons: The neural population was divided into two subpopulations based on the quality of a cosine fit to  
the activity of each neuron. The average activity in the neural manifold for reaches to each of the eight targets are shown for one example session; one 
data point per reach. The clustering by target direction observed in the full population (left) was preserved for the tuned subpopulation (middle) but  
not for the untuned subpopulation (right). (b) Distribution of the averaged top four CCs between the tuned subpopulation and the full population (red), 
and between the untuned subpopulation and the full population (blue) for all M1 sessions. The dynamics of the untuned population could be well aligned 
with the dynamics of the full population. Data pooled over all sessions from Monkey CL. (c) A static model based on movement tuning properties of 
individual neurons represents reaches to each target with one data point per trial and results in target-specific clusters that can be aligned. (d) Left:  
each point represents a reach to one of the eight targets (color code in inset) on Day 1 (closed circles) and Day n (open squares). Target specificity is 
mostly lost when these points are projected onto their respective manifolds. Right: after alignment, similar target-specific structure is present for both 
days. (e) Pairwise comparisons of the CCs after projecting the latent dynamics onto the manifold axes found by aligning the clusters (vertical axis) and 
onto the manifold axes found by aligning the latent dynamics (horizontal axis). Data shown for the top six neural modes (see legend for color code). Each 
dot represents one session comparison. All dots lie below the diagonal (dashed grey), indicating that aligning the statistics of the population activity 
based on target-specific clusters does not reach the CC values obtained by aligning the latent dynamics. (f) Canonical correlation values were significantly 
lower when the static clusters as opposed to the latent dynamics were aligned, illustrating the importance of the precise temporal dynamics for accurate 
alignment. (g) Consequently, across-day decoding was notably worse when aligning the static clusters.***: p < 0.001, two-sided Wilcoxon rank-sum test. 
Error bars: mean ± s.d. n: number of across-day comparisons.
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Extended Data Fig. 9 | Additional data: PMd alignment and decoding. (a) Example mean neural firing rates for 51 PMd multiunits recorded on Day 27 and 
Day 43 from Monkey CL (top; each multiunit is shown in a different row) and corresponding hand velocity (bottom). Each column represents the average 
of all trials to each of the eight reach directions (indicated by the arrows above each column). Data was recorded during the pre-movement planning and 
the transition to movement; hand velocities are thus largely zero. Note the substantial changes in the planning activity of the recorded PMd multiunits 
across days. Velocity scale bars: horizontal, 300 ms; vertical, 10 cm/s. (b) Correlation of the aligned (CCs; red) and unaligned (Pearson’s r ; orange) PMd 
latent dynamics averaged over the top four neural modes across all pairs of days from Monkey M (single dots: pairs of days; lines: linear fits). (c) Same 
as (b) for Monkey T. (d) Classification accuracy for classifiers trained and tested on all different pairs of days for Monkey M (left). (e) Same as (d) for 
Monkey T.
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Extended Data Fig. 10 | Additional data: S1 alignment and decoding. (a) Example mean neural firing rates aligned to movement onset for 65 S1 multiunits 
recorded on Day 1 and Day 29 from Monkey P (top; each multiunit shown in a different row) and corresponding hand velocity (bottom). Each column 
represents the average of all trials to each of the eight reach directions (indicated by the arrows above each column). Velocity scale bars: horizontal,  
300 ms; vertical, 10 cm/s. (b) Correlation of the aligned (CCs; red) and unaligned (Pearson’s r; orange) S1 latent dynamics averaged over the top four 
neural modes across all pairs of days from Monkey H (single dots: pairs of days; lines: linear fits). (c) Predictive accuracy for decoders trained and tested 
on all different pairs of days for Monkey P. (d) Same as (c) for Monkey H.
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